

Science Biology 3rd Nine Weeks

This academic overview can be used to monitor and support your child's at-home learning progress.

Unit 7: Evolution

Student Learning Targets

- I can explain the concept of common ancestry.
- I can analyze and evaluate fossil evidence, biogeography, and homologies to determine common ancestry.
- I can explain the elements or factors of natural selection.
- I can give examples of adaptations for different organisms and explain how they allow a species to have success in their environment.

Questions to Check for Unit Understanding

- How does the environment influence the genetics of a population?
- How can common characteristics between extinct and extant organisms provide insight in environmental conditions of the past?
- Could global climate change influence evolution?

Key Academic Vocabulary

- Evolution: descent with modification from a preexisting species
- Natural Selection: Differences in the inherited traits and characteristics that allows a group of organisms to survive and reproduce

Unit 8: Taxonomy and Classification

Student Learning Targets

- I can classify organisms based on the characteristics of the six biological kingdoms, including cell type, cell number, nutrition, reproduction, and motility.
- I can compare the characteristics of taxonomic groups, including archaea, bacteria, protists, fungi, and animals.

Questions to Check for Unit Understanding

- Which characteristics of life are significant enough to be used for classification?
- How can cladograms and phylogenetic trees demonstrate taxonomy?

Key Academic Vocabulary

• Taxonomy: the branch of science focused on classification of organisms

Unit 9: Animal Systems

Student Learning Targets

- I can describe the function of each animal system and give examples of the major organs.
- I can describe the interactions that occur among systems that perform regulation in order to maintain homeostasis.
- I can describe the interactions that occur among systems that perform the functions of nutrient absorption
- I can describe the interactions that occur among systems that perform the function of reproduction.
- I can describe the interactions that occur among systems that perform the function of defense from injury or illness.

Questions to Check for Unit Understanding

- Why is the ability to defend from injury and illness beneficial to an animal?
- If a portion of the population does not have the ability to reproduce, what are the possible implications?
- Homeostasis is maintained through which processes?

- Interdependence: a relationship between parts of a system where each part relies on other parts
- Response: an action prompted by a stimulus

Science Chemistry 3rd Nine Weeks

This academic overview can be used to monitor and support your child's at-home learning progress.

Unit 6: Stoichiometry

Student Learning Targets

- I can define stoichiometry and explain how it is used in chemistry.
- I can solve stoichiometric calculations, such as mass-volume, volume-volume, and particle-mass calculations by using conversion factors derived from balanced chemical equations.
- I can determine a limiting reagent by performing mathematical calculations
- I can select the limiting reagent in a balanced chemical equation.

Questions to Check for Unit Understanding

- What is stoichiometry?
- What is the mathematical relationship between the reactants and the products?
- How can measured quantities be manipulated using conversion factors derived from balanced chemical equations?
- How can dimensional analysis be used to calculate quantities of reactants or products involved in chemical reactions?
- How can limiting reagents be determined?
- How can limiting reagents be used to calculate the amount of products produced in a chemical reaction?

Key Academic Vocabulary

- Stoichiometry: the calculation of the quantities of chemical elements or compounds involved in chemical reactions.
- Avogadro's number: number of units in one mole of any substance, equal to 6.02214076 × 10²³
- Limiting reagent: the reactant that is totally consumed when the chemical reactions is complete
- Dimensional analysis: the process of converting between units
- Mole: the standard SI unit for measuring large quantities of atoms, molecules or other particles
- Mole ratio: the ratio between the amounts in moles of any two compounds involved in a chemical reaction.
- Yield: ratio of moles of product to moles of reactant usually expressed as a percentage

Unit 7: Behavior of Gases

Student Learning Targets

- I can calculate P, V, n or T given the other three variables and describe how a gas responds to changes in P, V, n, or T.
- I can explain the relationship between the variables in Boyle's Law, Charles' Law, Gay-Lussac's Law, and Dalton's Law of Partial Pressure.
- I can use Dalton's Law of Partial Pressure to calculate the partial pressure of any gas in a mixture, given the composition of that mixture.

Questions to Check for Unit Understanding

- In what ways are the properties (volume, pressure, moles, temperature) of ideal gases related?
- In what ways are the properties (volume, pressure, moles, temperature) of ideal gases calculated?
- How does kinetic molecular theory explain the behavior of an ideal gas system?

- Boyle's Law: the volume of a gas at constant temperature varies inversely with the pressure exerted on it.
- Charles's Law: the volume occupied by a fixed amount of gas is directly proportional to its absolute temperature, if the pressure remains constant.
- Dalton's Law of Partial Pressure: the total pressure of a mixture of gases is the sum of the partial pressures of its components (P Total= P gas 1 + P gas 2 + P gas 3)
- Ideal Gas Law: the pressure, temperature, and volume of gas are related to each other.
- Ideal Gas Constant: the ratio of the product of pressure and volume to the product of mole and temperature.
- Pressure: the force that the gas exerts on the walls of its container
- Molar Volume: the volume of 1 mole of a gas at a given temperature and pressure
- Kinetic Molecular Theory: the space between gas molecules is much larger than the molecules themselves

Science Chemistry 3rd Nine Weeks

This academic overview can be used to monitor and support your child's at-home learning progress.

Unit 8: Behavior of Solutions

Student Learning Targets

- I can apply solubility rules.
- I can identify solubility rules.
- I can calculate molarity of solutions.
- I can calculate the dilutions of solutions using molarity.

Questions to Check for Unit Understanding

- Why do solutions exist?
- How can I efficiently make sweet tea?
- How does the concentration of a solute in a solution impact its use?
- Why do some solutes dissolve in water while others don't?
- How is the concentration of solutions accurately calculated?
- What is dilution of a solution and how can it be calculated?

- Aqueous solution: a solution in which the solvent is water.
- Concentration: the ratio of solute in a solution to either solvent or total solution.
- Dilution: the reduction of the concentration of a solute in a solution by the addition of more solvent
- Dissolution: the process where a solute dissolves in a solvent to form a solution
- Molarity: the moles of a solute per liters of a solution (Also known as molar concentration),
- Solubility: the ability of a solid, liquid, or gas solute to dissolve in a solvent which is generally a liquid.
- Solution: a homogeneous mixture of one or more solutes dissolved in a solvent
- Solute: a substance dissolved in a solution
- Solvent: a substance (usually a liquid) in which other materials to dissolve to form a solution.

Science Physics 3rd Nine Weeks

This academic overview can be used to monitor and support your child's at-home learning progress.

Unit 7: Work Energy Theorem and Power

Student Learning Targets

- I can demonstrate that applying work to an object/system can change its kinetic energy
- I can calculate quantities using the work-energy theorem
- I can define the law of conservation as Energy is neither created nor destroyed only changed.
- I can demonstrate that energy is always conserved in a closed system.
- I can explain that energy can be released as heat in an open system.

Questions to Check for Unit Understanding

- What is work?
- What is mechanical energy?
- How are work and mechanical energy related?
- What is power and how is it related to work?

Key Academic Vocabulary

- Work: the change in energy of an object that is caused by the application of a force on the object over a specific distance or displacement
- Work Energy Theorem: a theorem stating that the work done on a system is equal to the change in the kinetic energy of the system
- Power: the rate of work or energy transfer per unit time

Unit 8: Heat Transfer and Thermodynamics

Student Learning Targets

- I can explain the four laws of thermodynamics
- I can illustrate the four laws of thermodynamics through everyday examples.
- I can explain the three processes of thermal energy transfer.
- I can illustrate the three processes of thermal energy transfer through everyday examples.

Questions to Check for Unit Understanding

- What are the mechanisms for heat transfer from one point to another?
- How is the law of conservation of energy applied in thermodynamic systems?

- First Law of Thermodynamics: the law stating that the total change in the internal energy of a system is the sum of the work done on the system and the heat energy added to it: $\Delta E = q + w$
- Second Law of Thermodynamics: the law stating that, when left to itself, a system's entropy always increases, never decreases; also known as the law of entropy
- Third Law of Thermodynamics: the law stating that as the temperature of a system approaches absolute zero (-273.15°C, or 0 K), the entropy of the system will also approach zero
- Heat: energy transferred between two objects of different temperatures, moving continually in a predictable pattern from warmer site to cooler site until all sites have reached the same temperature

Science Environmental Systems 3rd Nine Weeks

This academic overview can be used to monitor and support your child's at-home learning progress.

Unit 6: Populations

Student Learning Targets

- I can make predictions about how a food chain may be altered by the extinction of a species.
- I can make predictions about how existing populations may be affected by the extinction of a species.
- I can identify and describe carrying capacity.
- I can explain how population increases and decreases are related to carrying capacity.
- I can recognize that impacts to populations of geographic locales can occur.
- I can make predictions about impacts to populations of geographic locales from diseases, birth and death rates, urbanization and natural events such as migration and seasonal changes.

Questions to Check for Unit Understanding

- What is an environment?
- How is the environment affected by changes?
- How does the extinction of one species affect existing populations in an ecosystem?
- What are the factors that affect birth rates, death rates and fertility rates? and carrying capacity?
- What are the effects when a population meets carrying capacity?
- What are the effects when a population exceeds carrying capacity?

- Carrying Capacity: the largest population that an environment can support at any given time
- Growth Rate: an expression of the increase in the size of an organism or population over a given period of time
- Limiting Factor: an environmental factor that prevents an organism or population from reaching its full potential of distribution or activity
- Population: a group of organisms of the same species that live in a specific geographical area
- Population Density: the number of individuals of the same species that live in a given unit of area
- Birth Rate: the number of births that occur in a period of time in a given area
- Death Rate: the number of deaths occurring in a period of time